

Thinking in Java,
2nd Edition, Release 11

http://www.planetpdf.com

Java. Ray Frederick Djajadinata, Student at Trisakti University,
Jakarta

About Thinking in C++:

Library of Congress Cataloging-in-Publication Data
Eckel, Bruce.
 Thinking in Java / Bruce Eckel.--2nd ed.
 p. cm.
 ISBN 0-13-027363-5
 1. Java (Computer progra6l
S
BTkage) I. Titl.
 QA6.473.J38E25 2000

mailto:corpsales@prenhall.com

Overview
Preface 1

Introduction 9

1: Introduction to Objects 29

2: Everything is an Object 101

3: Controlling Program Flow 133

4: Initialization & Cleanup 191

5: Hiding the Implementation 243

6: Reusing Classes 271

7: Polymorphism 311

8: Interfaces & Inner Classes 349

9: Holding Your Objects 407

EJB component.......................... 994
EJB operation 995
Types of EJBs............................. 996
Developing an EJB..................... 997
EJB summary........................... 1003

Jini: distributed
services..........................1003

Jini in context 1003

Preface 3

efficient. Those are both very useful goals and account for much of the
success of C++, but they also expose extra complexity that prevents some
projects from being finished (certainly, you can blame programmers and
management, but if a language can help by catching your mistakes, why

4 Thinking in Java www.BruceEckel.com

businesses). As we talk to each other more, amazing things begin to
happen, possibly more amazing even than the promise of genetic
engineering.

In all ways—creating the programs, working in teams to create the
programs, building user interfaces so the programs can communicate
with the user, running the programs on different types of machines, and
easily writing programs that communicate across the Internet—Java
increases the communication bandwidth between people. I think that
perhaps the results of the communication revolution will not be seen from

Preface 5

www.BruceEckel.com). If you want the old stuff, it’s still there, and this is

6 Thinking in Java www.BruceEckel.com

8 Thinking in Java www.BruceEckel.com

 9

10 Thinking in Java www.BruceEckel.com

Introduction 11

12 Thinking in Java www.BruceEckel.com

Introduction 13

14 Thinking in Java www.BruceEckel.com

24 Thinking in Java www.BruceEckel.com

26 Thinking in Java www.BruceEckel.com

Thanks to people who have spoken in my Java track at the Software

28 Thinking in Java www.BruceEckel.com

 29

32 Thinking in Java www.BruceEckel.com

can think of a message as a request to call a function that belongs
to a particular object.

3. Each object has its own memory made up of other
objects. Put another way, you create a new kind of object by
making a package containing existing objects. Thus, you can build
complexity in a program while hiding it behind the simplicity of
objects.

4. Every object has a type. Using the parlance, each object is an
instance of a class, in which “class” is synonymous with “type.” The

 Chapter 1: Introduction to Objects 33

34 Thinking in Java www.BruceEckel.com

mapping between the elements in the problem space and objects in the

Chapter 1: Introduction to Objects 35

Chapter 1: Introduction to Objects 37

the same package, but outside of the package those same friendly
members appear to be private.

Reusing the
implementation

Once a class has been created and tested, it should (ideally) represent a

Chapter 1: Introduction to Objects 39

Base

Derived

Chapter 1: Introduction to Objects 41

42 Thinking in Java www.BruceEckel.com

44 Thinking in Java www.BruceEckel.com

Chapter 1: Introduction to Objects 47

48 Thinking in Java www.BruceEckel.com

possible types that a Shape can actually be, it’s messy and you need to

Chapter 1: Introduction to Objects 49

being forced to provide a possibly meaningless body of code for that
method.

The interface keyword takes the concept of an abstract class one step
further by preventing any function definitions at all. The interface is a
very handy and commonly used tool, as it provides the perfect separation
of interface and implementation. In addition, you can combine many
interfaces together, if you wish, whereas inheriting from multiple regular
classes or abstract classes is not possible.

Object landscapes and
lifetimes

50 Thinking in Java www.BruceEckel.com

Chapter 1: Introduction to Objects 51

Chapter 1: Introduction to Objects 53

56 Thinking in Java www.BruceEckel.com

warehouse, or a video rental system, or a kennel for boarding pets.) At
first it seems simple: make a container to hold airplanes, then create a

62 Thinking in Java www.BruceEckel.com

name it. What we’ve come up with in the past is individual solutions to
individual problems, inventing a new solution each time. These were hard

66 Thinking in Java www.BruceEckel.com

Java
If a scripting language can solve 80 percent of the client-side

Chapter 1: Introduction to Objects 67

(accesses) to download. (In Java 1.1 and higher this is minimized by Java

68 Thinking in Java www.BruceEckel.com

Chapter 1: Introduction to Objects 69

signed applet can still trash your disk, but the theory is that since you can
now hold the applet creator accountable they won’t do vicious things. Java
provides a framework for digital signatures so that you will eventually be
able to allow an applet to step outside the sandbox if necessary.

70 Thinking in Java www.BruceEckel.com

addition, you might already have a body of legacy code that you’ve been

Chapter 1: Introduction to Objects 71

Chapter 1: Introduction to Objects 75

Chapter 1: Introduction to Objects 79

80 Thinking in Java www.BruceEckel.com

Chapter 1: Introduction to Objects 81

Before I began using CRC cards, the most successful consulting

84 Thinking in Java www.BruceEckel.com

disprove your architecture. This is not a one-pass process, but rather the
beginning of a series of steps that will iteratively build the system, as
you’ll see in Phase 4.

Your goal is to find the core of your system architecture that needs to be

86 Thinking in Java www.BruceEckel.com

Chapter 1: Introduction to Objects 87

Evolution also occurs when you build a system, see that it matches your
requirements, and then discover it wasn’t actually what you wanted.
When you see the system in operation, you find that you really wanted to
solve a different problem. If you think this kind of evolution is going to
happen, then you owe it to yourself to build your first version as quickly as

88 Thinking in Java www.BruceEckel.com

Chapter 1: Introduction to Objects 89

90 Thinking in Java www.BruceEckel.com

right from the beginning? That’s why you write them first, and run them
automatically with every build of your system. Your tests become an

Chapter 1: Introduction to Objects 91

92 Thinking in Java www.BruceEckel.com

94 Thinking in Java www.BruceEckel.com

Chapter 1: Introduction to Objects 95

Appendix B.) There are incremental benefits, especially if the code is
slated for reuse. But chances are you aren’t going to see the dramatic
increases in productivity that you hope for in your first few projects unless
that project is a new one. Java and OOP shine best when taking a project

96 Thinking in Java www.BruceEckel.com

Chapter 1: Introduction to Objects 97

98 Thinking in Java www.BruceEckel.com

Chapter 1: Introduction to Objects 99

 101

102 Thinking in Java www.BruceEckel.com

Chapter 2: Everything is an Object 103

104 Thinking in Java www.BruceEckel.com

memory and moved up to release that memory. This is an
extremely fast and efficient way to allocate storage, second only to

106 Thinking in Java www.BruceEckel.com

Chapter 2: Everything is an Object 107

110 Thinking in Java www.BruceEckel.com

Creating new
data types: class

If everything is an object, what determines how a particular class of object
looks and behaves? Put another way, what establishes the

112 Thinking in Java www.BruceEckel.com

Primitive type Default

boolean false

char ‘\u0000’ (null)

byte (byte)0

short (short)0

int 0

long 0L

float 0.0f

double 0.0d

Note carefully that the default values are what Java guarantees when the
variable is used as a member of a class. This ensures that member
variables of primitive types will always be initialized (something C++

114 Thinking in Java www.BruceEckel.com

116 Thinking in Java www.BruceEckel.com

Chapter 2: Everything is an Object 121

Chapter 2: Everything is an Object 123

Remember, however, that everything inside the /*

124 Thinking in Java www.BruceEckel.com

126 Thinking in Java www.BruceEckel.com

@see fully-qualified-classname
@see fully-qualified-classname#method-name

 Tc
0

Chapter 3: Controlling Program Flow 135

Chapter 3: Controlling Program Flow 139

140 Thinking in Java www.BruceEckel.com

142 Thinking in Java www.BruceEckel.com

} ///:~

Chapter 3: Controlling Program Flow 143

you’re back to square one: the result is false. This is because the default
behavior of equals()

Chapter 3: Controlling Program Flow 145

Chapter 3: Controlling Program Flow 147

Bitwise operators can be combined with the =

148 Thinking in Java www.BruceEckel.com

Chapter 3: Controlling Program Flow 149

 int maxpos = 2147483647;
 pBinInt("maxpos", maxpos);
 int maxneg = -2147483648;

"maxpos", maxpos)15"maxpos", maxpos)02"maxpos", maxpos�89

Chapter 3: Controlling Program Flow 151

152 Thinking in Java www.BruceEckel.com

Chapter 3: Controlling Program Flow 153

154 Thinking in Java www.BruceEckel.com

 //
}

The programmer was trying to test for equivalence (==) rather than do an

156 Thinking in Java www.BruceEckel.com

 long n3 = 200;
 //! long l6(200); // not allowed
 float f1 = 1;
 float f2 = 1F; // float suffix

Chapter 3: Controlling Program Flow 157

sensitive about introducing such an ambiguity.1 At any rate, this custom

158 Thinking in Java www.BruceEckel.com

160 Thinking in Java www.BruceEckel.com

 x = x ^ y;
 //! x = x << 1;
 //! x = x >> 1;
 //! x = x >>> 1;
 // Compound assignment:
 //! x += y;
 //! x -= y;
 //! x *= y;
 //! x /= y;
 //! x %= y;
 //! x <<= 1;
 //! x >>= 1;
 //! x >>>= 1;

Chapter 3: Controlling Program Flow 161

162 Thinking in Java www.BruceEckel.com

Chapter 3: Controlling Program Flow 163

164 Thinking in Java www.BruceEckel.com

 x ^= y;

Chapter 3: Controlling Program Flow 167

168 Thinking in Java www.BruceEckel.com

 x = x / y;
 x = x % y;
 x = x + y;
 x = x - y;

 --y; x =+ y; x =- y; // Relational and logical:; f(x > y)y; f(x >= y)y; f(x < y)y; f(x <= y)y; f(x == y)y; f(x != y)y; //! f(!x)y; //! f(x && y)y;

 //! f(x || y)y;

 // Bitwise operators:; //! x =~ y; //! x = x&- y; //! x = x|- y; //! x =x ^- y; //! x = x<< 1y; //! x = x>> 1y; //! x =x >>> 1y; // Compound assignment:;

Chapter 3: Controlling Program Flow 171

172 Thinking in Java www.BruceEckel.com

Chapter 3: Controlling Program Flow 175

178 Thinking in Java www.BruceEckel.com

Although goto is a reserved word in Java, it is not used in the language;
Java has no goto. However, it does have something that looks a bit like a
jump tied in with the break and continue keywords. It’s not a jump but
rather a way to break out of an iteration statement. The reason it’s often
thrown in with discussions of goto

180 Thinking in Java www.BruceEckel.com

 // Can't break or continue
 // to labels here
 }
 static void prt(String s) {
 System.out.println(s);
 }
} ///:~

This uses the prt() method that has been defined in the other examples.

Note that

Chapter 3: Controlling Program Flow 181

Chapter 3: Controlling Program Flow 183

note that this is a case where a language feature is made more useful by
restricting the power of the statement.

switch
The switch is sometimes classified as a selection statement. The switch

184 Thinking in Java www.BruceEckel.com

188 Thinking in Java www.BruceEckel.com

 191

Chapter 4: Initialization & Cleanup 193

Chapter 4: Initialization & Cleanup 197

//: c04:OverloadingOrder.java
// Overloading based on the order of
// the arguments.

public class OverloadingOrder {
 static void print(String s, int i) {
 System.out.println(
 "String: " + s +
 ", int: " + i);
 }
 static void print(int i, String s) {
 System.out.println(
 "int: " + i +
 ", String: " + s);
 }
 public static void main(String[] args) {
 print("String first", 11);
 print(99, "Int first");
 }
} ///:~

The two print()

1 9 8 T h i n k i n g i n J a v a w w w . B r u c e E c k e l . c o m

Chapter 4: Initialization & Cleanup 199

Chapter 4: Initialization & Cleanup 201

202 Thinking in Java www.BruceEckel.com

Overloading on return values
It is common to wonder “Why only class names and method argument
lists? Why not distinguish between methods based on their return

Chapter 4: Initialization & Cleanup 203

204 Thinking in Java www.BruceEckel.com

Chapter 4: Initialization & Cleanup 205

 Leaf x = new Leaf();
 x.increment().increment().increment().print();
 }
} ///:~

Because increment() returns the reference to the current object via the
this

Chapter 4: Initialization & Cleanup 209

212 Thinking in Java www.BruceEckel.com

Chapter 4: Initialization & Cleanup 217

work for the garbage collector. Reference counting is commonly used to
explain one kind of garbage collection but it doesn’t seem to be used in
any JVM implementations.

In faster schemes, garbage collection is not based on reference counting.

Chapter 4: Initialization & Cleanup 219

case of lots of short-lived temporary objects. Periodically, a full sweep is
made—large objects are still not copied (just get their generation count

220 Thinking in Java www.BruceEckel.com

covered that up. Forcing the programmer to provide an initialization
value is more likely to catch a bug.

If a primitive is a data member of a class, however, things are a bit
different. Since any method can initialize or use that data, it might not be
practical to force the user to initialize it to its appropriate value before the
data is used. However, it’s unsafe to leave it with a garbage value, so each

Chapter 4: Initialization & Cleanup 223

226 Thinking in Java www.BruceEckel.com

Chapter 4: Initialization & Cleanup 227

Chapter 4: Initialization & Cleanup 229

 }
 void f(int marker) {

232 Thinking in Java www.BruceEckel.com

int[] a2;

234 Thinking in Java www.BruceEckel.com

// Creating an array of nonprimitive objects.
import java.util.*;

public class ArrayClassObj {
 static Random rand = new Random();

238 Thinking in Java www.BruceEckel.com

 243

5: Hiding the
Implementation

A primary consideration in object-oriented design is
“separating the things that change from the things that
stay the same.”

This is particularly important for libraries. The user (client programmer)

244 Thinking in Java www.BruceEckel.com

other languages (especially C) and are used to accessing everything
without restriction. By the end of this chapter you should be convinced of
the value of access control in Java.

The concept of a library of components and the control over who can
access the components of that library is not complete, however. There’s
still the question of how the components are bundled together into a
cohesive library unit. This is controlled with the package keyword in

Chapter 5: Hiding the Implementation 245

Chapter 5: Hiding the Implementation 249

Chapter 5: Hiding the Implementation 251

java.util.Vector v = new java.util.Vector();

Since this (along with the CLASSPATH) completely specifies the location
of that Vector

252 Thinking in Java www.BruceEckel.com

256 Thinking in Java www.BruceEckel.com

Chapter 5: Hiding the Implementation 259

it’s tolerable to get away without it. (This is a distinct contrast with C++.)
However, it turns out that the consistent use of private is very important,
especially where multithreading is concerned. (As you’ll see in Chapter
14.)

Here’s an example of the use of private:

//: c05:IceCream.java
// Demonstrates "private" keyword.

class Sundae {
 private Sundae() {}
 static Sundae makeASundae() {

Chapter 5: Hiding the Implementation 261

 System.out.println(

Chapter 5: Hiding the Implementation 265

266 Thinking in Java www.BruceEckel.com

Chapter 5: Hiding the Implementation 267

Summary

268 Thinking in Java www.BruceEckel.com

Access specifiers in Java give valuable control to the creator of a class. The
users of the class can clearly see exactly what they can use and what to

Chapter 5: Hiding the Implementation 269

5. Change the import statement in TestAssert.java to enable and
disable the assertion mechanism.

6. Create a class with public, private, protected, and “friendly”
data members and method members. Create an object of this class
and see what kind of compiler messages you get when you try to
access all the class members. Be aware that classes in the same

270 Thinking in Java www.BruceEckel.com

 271

Chapter 6: Reusing Classes 273

274 Thinking in Java www.BruceEckel.com

All three approaches are shown here:

//: c06:Bath.java
// Constructor initialization with composition.

class Soap {
 private String s;

276 Thinking in Java www.BruceEckel.com

Chapter 6: Reusing Classes 277

This demonstrates a number of features. First, in the Cleanser

278 Thinking in Java www.BruceEckel.com

Chapter 6: Reusing Classes 279

280 Thinking in Java www.BruceEckel.com

Constructors with arguments
The above example has default constructors; that is, they don’t have any
arguments. It’s easy for the compiler to call these because there’s no
question about what arguments to pass. If your class doesn’t have default
arguments, or if you want to call a base-class constructor that has an

Chapter 6: Reusing Classes 281

Catching base constructor exceptions
As just noted, the compiler forces you to place the base-class constructor
call first in the body of the derived-class constructor. This means nothing
else can appear before it. As you’ll see in Chapter 10, this also prevents a

282 Thinking in Java www.BruceEckel.com

class Spoon extends Utensil {
 Spoon(int i) {
 super(i);
 System.out.println("Spoon constructor");
 }
}

class Fork extends Utensil {
 Fork(int i) {
 super(i);
 System.out.println("Fork constructor");
 }
}

class Knife extends Utensil {
 Knife(int i) {
 super(i);
 System.out.println("Knife constructor");
 }
}

// A cultural way of doing something:
class Custom {
 Custom(int i) {
 System.out.println("Custom constructor");
 }
}

public class PlaceSetting extends Custom {
 Spoon sp;
 Fork frk;
 Knife kn;
 DinnerPlate pl;
 PlaceSetting(int i) {
 super(i + 1);
 sn
ET
131.Swon(int i);2

int i);3
 supekn131.Swoe(int i);4
 sn
Epl131.SwoerPlate pl;t i);5

Chapter 6: Reusing Classes 283

284 Thinking in Java www.BruceEckel.com

 }
}

class Circle extends Shape {
 Circle(int i) {
 super(i);
 System.out.println("Drawing a Circle");
 }
 void cleanup() {
 System.out.println("Erasing a Circle");
 super.cleanup();
 }
}

class Triangle extends Shape {
 Triangle(int i) {
 super(i);
 System.out.println("Drawing a Triangle");
 }
 void cleanup() {
 System.out.println("Erasing a Triangle");
 super.cleanup();
 }
}

class Line extends Shape {
 private int start, end;
 Line(int start, int end) {
 super(start);
 this.start = start;
 this.end = end;
 System.out.println("Drawing a Line: " +
 start + ", " + end);
 }
 void cleanup() {
 System.out.println("Erasing a Line: " +
 start + ", " + end);
 super.cleanup();
 }
}

286 Thinking in Java www.BruceEckel.com

Chapter 6: Reusing Classes 291

Incremental development
One of the advantages of inheritance is that it supports incremental
development

Chapter 6: Reusing Classes 293

tune() could call for an

Chapter 6: Reusing Classes 295

When using final with object references rather than primitives the
meaning gets a bit confusing. With a primitive, final makes the value a
constant, but with an object reference, final makes the reference a

Chapter 6: Reusing Classes 297

fd2: i4 = 10, i5 = 9

Note that the values of i4 f14

298 Thinking in Java www.BruceEckel.com

Chapter 6: Reusing Classes 301

 public static void main(String[] args) {
 OverridingPrivate2 op2 =
 new OverridingPrivate2();
 op2.f();
 op2.g();
 // You can upcast:
 OverridingPrivate op = op2;

302 Thinking in Java www.BruceEckel.com

306 Thinking in Java www.BruceEckel.com

Chapter 6: Reusing Classes 307

Although code reuse through composition and inheritance is helpful for

308 Thinking in Java www.BruceEckel.com

9. Create a base class with only a nondefault constructor, and a

 311

312 Thinking in Java www.BruceEckel.com

314 Thinking in Java www.BruceEckel.com

Chapter 7: Polymorphism 315

318 Thinking in Java www.BruceEckel.com

320 Thinking in Java www.BruceEckel.com

322 Thinking in Java www.BruceEckel.com

Chapter 7: Polymorphism 323

public class Music3 {
 // Doesn't care about type, so new types
 // added to the system still work right:

324 Thinking in Java www.BruceEckel.com

Chapter 7: Polymorphism 325

326 Thinking in Java www.BruceEckel.com

Chapter 7: Polymorphism 327

the derived class is also abstract and the compiler will force you to qualify
that

328 Thinking in Java www.BruceEckel.com

330 Thinking in Java www.BruceEckel.com

Chapter 7: Polymorphism 331

Chapter 7: Polymorphism 333

Inheritance and finalize()

Chapter 7: Polymorphism 335

Chapter 7: Polymorphism 337

Chapter 7: Polymorphism 341

348Thinking in Java www.BruceEckel.com

350 Thinking in Java www.BruceEckel.com

352 Thinking in Java www.BruceEckel.com

Chapter 8: Interfaces & Inner Classes 355

Chapter 8: Interfaces & Inner Classes 359

 DragonZilla if2 = new DragonZilla();

Chapter 8: Interfaces & Inner Classes 361

362 Thinking in Java www.BruceEckel.com

364 Thinking in Java www.BruceEckel.com

366 Thinking in Java www.BruceEckel.com

372 Thinking in Java www.BruceEckel.com

 public static void main(String[] args) {
 Parcel4 p = new Parcel4();
 Destination d = p.dest("Tanzania");
 }
} ///:~

The class

Chapter 8: Interfaces & Inner Classes 375

Chapter 8: Interfaces & Inner Classes 379

particular object of the enclosing class that was responsible for creating it.
Then when you refer to a member of the enclosing class, that (hidden)
reference is used to select that member. Fortunately, the compiler takes
care of all these details for you, but you can also understand now that an

382 Thinking in Java www.BruceEckel.com

Chapter 8: Interfaces & Inner Classes 385

inside the constructor. This provides the necessary reference and the
program will then compile.

Can inner classes be overridden?
What happens when you create an inner class, then inherit from the
enclosing class and redefine the inner class? That is, is it possible to
override an inner class? This seems like it would be a powerful concept,

386 Thinking in Java www.BruceEckel.com

BigEgg is being created, the “overridden” version of Yolk would be used,
but this is not the case. The output is:

New Egg()
Egg.Yolk()

This example simply shows that there isn’t any extra inner class magic
going on when you inherit from the outer class. The two inner classes are

Chapter 8: Interfaces & Inner Classes 387

 Egg2 e2 = new BigEgg2();
 e2.g();
 }
} ///:~

Now

392 Thinking in Java www.BruceEckel.com

interface Incrementable {
 void increment();
}

// Very simple to just implement the interface:
class Callee1 implements Incrementable {
 private int i = 0;
 public void increment() {
 i++;
 System.out.println(i);
 }
}

class MyIncrement {
 public void increment() {
 System.out.println("Other operation");
 }
 public stati4 0 0 11.04 144 436.4406

394 Thinking in Java www.BruceEckel.com

396 Thinking in Java www.BruceEckel.com

Chapter 8: Interfaces & Inner Classes 397

EventSet arbitrarily holds 100 Event

398 Thinking in Java www.BruceEckel.com

2.

Chapter 8: Interfaces & Inner Classes 399

 }
 public String description() {

402 Thinking in Java www.BruceEckel.com

Most of the

 407

9: Holding
Your Objects

It’s a fairly simple program that has only a fixed quantity
of objects with known lifetimes.

Chapter 9: Holding Your Objects 411

412 Thinking in Java www.BruceEckel.com

Array c shows the creation of the array object foll9(uobje)ed by the assignment of Weeble objects to all the slots in the array. Array d shows the

Chapter 9: Holding Your Objects 413

create and access an array of primitives than a container of wrapped
primitives.

Chapter 9: Holding Your Objects 421

422 Thinking in Java www.BruceEckel.com

Chapter 9: Holding Your Objects 427

 new Arrays2.RandByteGenerator());
 Arrays2.print(a2);
 Arrays2.print("a2 = ", a2);
 Arrays2.print(a2, size/3, size/3 + size/3);
 Arrays2.fill(a3,
 new Arrays2.RandCharGenerator());
 Arrays2.print(a3);
 Arrays2.print("a3 = ", a3);
 Arrays2.print(a3, size/3, size/3 + size/3);
 Arrays2.fill(a4,
 new Arrays2.RandShortGenerator());
 Arrays2.print(a4);
 Arrays2.print("a4 = ", a4);
 Arrays2.print(a4, size/3, size/3 + size/3);
 Arrays2.fill(a5,
 new Arrays2.RandIntGenerator());
 Arrays2.print(a5);
 Arrays2.print("a5 = ", a5);
 Arrays2.print(a5, size/3, size/3 + size/3);
 Arrays2.fill(a6,
 new Arrays2.RandLongGenerator());
 Arrays2.print(a6);
 Arrays2.print("a6 = ", a6);
 Arrays2.print(a6, size/3, size/3 + size/3);
 Arrays2.fill(a7,
 new Arrays2.RandFloatGenerator());
 Arrays2.print(a7);
 Arrays2.print("a7 = ", a7);
 Arrays2.print(a7, size/3, size/3 + size/3);
 Arrays2.fill(a8,
 new Arrays2.RandDoubleGenerator());
 Arrays2.print(a8);
 Arrays2.print("a8 = ", a8);
 Arrays2.print(a8, size/3, size/3 + size/3);
 Arrays2.fill(a9,
 new Arrays2.RandStringGenerator(7));
 Arrays2.print(a9);
 Arrays2.print("a9 = ", a9);
 Arrays2.print(a9, size/3, size/3 + size/3);
 }
} ///:~

Chapter 9: Holding Your Objects 429

Chapter 9: Holding Your Objects 433

 return Math.abs(r.nextInt()) % 100;
 }
 public static Generator generator() {
 return new Generator() {
 public Object next() {
 return new CompType(randInt(),randInt());
 }
 };
 }
 public static void main(String[] args) {
 CompType[] a = new CompType[10];
 Arrays2.fill(a, generator());
 Arrays2.print("before sorting, a = ", a);
 Arrays.sort(a);
 Arrays2.print("after sorting, a = ", a);

Chapter 9: Holding Your Objects 435

 public static void main(String[] args) {
 CompType[] a = new CompType[10];
 Arrays2.fill(a, CompType.generator());
 Arrays2.print("before sorting, a = ", a);
 Arrays.sort(a, new CompTypeComparator());
 Arrays2.print("after sorting, a = ", a);
 }
} ///:~

The compare() method must return a negative integer, zero, or a
positive integer if the first argument is less than, equal to, or greater than
the second, respectively.

Chapter 9: Holding Your Objects 437

438 Thinking in Java www.BruceEckel.com

In the while

Chapter 9: Holding Your Objects 439

 Arrays.binarySearch(sa, sa[10], comp);
 System.out.println("Index = " + index);
 }
} ///:~

The

440 Thinking in Java www.BruceEckel.com

containers library, providing the behavior of linked lists, queues, and
deques (double-ended queues, pronounced “decks”).

Chapter 9: Holding Your Objects 441

We will first look at the general features of containers, then go into
details, and finally learn why there are different versions of some
containers, and how to choose between them.

Chapter 9: Holding Your Objects 443

444 Thinking in Java www.BruceEckel.com

Chapter 9: Holding Your Objects 445

Chapter 9: Holding Your Objects 447

 {"MADAGASCAR","Antananarivo"}, {"MALAWI","Lilongwe"},

448 Thinking in Java www.BruceEckel.com

Chapter 9: Holding Your Objects 449

450 Thinking in Java www.BruceEckel.com

Container disadvantage:
unknown type

Chapter 9: Holding Your Objects 451

Chapter 9: Holding Your Objects 453

 public String toString() {
 return "This is Mouse #" + mouseNumber;

462 Thinking in Java www.BruceEckel.com

interface throughout the rest of your code. In addition, you do not need

466 Thinking in Java www.BruceEckel.com

Chapter 9: Holding Your Objects 469

Chapter 9: Holding Your Objects 471

Chapter 9: Holding Your Objects 473

 queue.put(Integer.toString(i));
 while(!queue.isEmpty())
 System.out.println(queue.get());
 }
} ///:~

Chapter 9: Holding Your Ob

478 Thinking in Java www.BruceEckel.com

hash table.

TreeMap

Chapter 9: Holding Your Objects 479

480 Thinking in Java www.BruceEckel.com

Chapter 9: Holding Your Objects 481

 }

484 Thinking in Java www.BruceEckel.com

Groundhog(3) does not

Chapter 9: Holding Your Objects 485

 }
} ///:~

Note that this uses the Prediction class from the previous example, so

Chapter 9: Holding Your Objects 487

488 Thinking in Java www.BruceEckel.com

the key: there is no order so a simple linear search is used, which is the
slowest way to look something up.

The whole point of hashing is speed: hashing allows the lookup to happen
quickly. Since the bottleneck is in the speed of the key lookup, one of the
solutions to the problem could be by keeping the keys sorted and then
using Collections.binarySearch() to perform the lookup (an exercise

Chapter 9: Holding Your Objects 491

operator and the size of the array. If that location is null

Chapter 9: Holding Your Objects 493

makes sense that the hashCode() produced by two separate instances of

Chapter 9: Holding Your Objects 495

Both hashCode() and equals() produce results based on both fields; if
they were just based on the String

496 Thinking in Java www.BruceEckel.com

You accomplish this by using a

Chapter 9: Holding Your Objects 497

Chapter 9: Holding Your Objects 499

500 Thinking in Java www.BruceEckel.com

Chapter 9: Holding Your Objects 503

 }
 private static Tester[] tests = {
 new Tester("get", 300) {
 void test(List a, int reps) {
 for(int i = 0; i < reps; i++) {
 for(int j = 0; j < a.size(); j++)
 a.get(j);
 }
 }
 },
 new Tester("iteration", 300) {
 void test(List a, int reps) {
 for(int i = 0; i < reps; i++) {
 Iterator it = a.iterator();
 while(it.hasNext())
 it.next();
 }
 }
 },
 new Tester("insert", 5000) {
 void test(List a, int reps) {
 int half = a.size()/2;
 String s = "test";
 ListIterator it = a.listIterator(half);
 for(int i = 0; i < size * 10; i++)
 it.add(s);
 }
 },
 new Tester("remove", 5000) {
 void test(List a, int reps) {
 ListIterator it = a.listIterator(3);
 while(it.hasNext()) {
 it.next();
 it.remove();
 }
 }
 },
 };
 public static void test(List a, int reps) {
 // A trick to print out the class name:
 System.out.println("Testing " +

Chapter 9: Holding Your Objects 505

The inner class Tester is abstract, to provide a base class for the specific
tests. It contains a String to be printed when the test starts, a size

Chapter 9: Holding Your Objects 509

 Collections2.fill(m,
 Collections2.geography.reset(), size);
 }
 }
 },
 new Tester("get") {
 void test(Map m, int size, int reps) {
 for(int i = 0; i < reps; i++)
 for(int j = 0; j < size; j++)
 m.get(Integer.toString(j));
 }
 },
 new Tester("iteration") {
 void test(Map m, int size, int reps) {
 for(int i = 0; i < reps * 10; i++) {
 Iterator it = m.entrySet().iterator();
 while(it.hasNext())
 it.next();
 }
 }
 },
 };
 public static void
 test(Map m, int size, int reps) {
 System.out.println("Testing " +
 m.getClass().getName() + " size " + size);
 Collections2.fill(m,
 Collections2.geography.reset(), size);
 for(int i = 0; i < tests.length; i++) {
 System.out.print(tests[i].name);
 long t1 = System.currentTimeMillis();
 tests[i]. 8m, int siint re();

 lo2g t1 = System.currentTimeMillis();

 System.out.printl:ting " +

514 Thinking in Java www.BruceEckel.com

Chapter 9: Holding Your Objects 515

contains a way to automatically synchronize an entire container. The

516 Thinking in Java www.BruceEckel.com

It’s quite easy to see the fail-fast mechanism in operation—all you have to
do is create an iterator and then add something to the collection that the
iterator is pointing to, like this:

//: c09:FailFast.java
// Demonstrates the "fail fast" behavior.
import java.util.*;

public class FailFast {
 public static voih-8T(Strnti[] args)st {

Chapter 9: Holding Your Objects 519

create a new Collection without providing meaningful definitions
for all the methods in the Collection interface, and yet still fit it
into the existing library.

2. When an operation is unsupported, there should be reasonable

520 Thinking in Java www.BruceEckel.com

522 Thinking in Java www.BruceEckel.com

Chapter 9: Holding Your Objects 529

speed of your new Map. Now change the put()

540 Thinking in Java www.BruceEckel.com

The process of creating your own exceptions can be taken further. You can
add extra constructors and members:

//: c10:ExtraFeatures.java
// Further embellishment of exception classes.

class MyException2 extends Exception {
 public MyException2() {}
 public MyException2(String msg) {
 super(msg);
 }
 public MyException2(String msg, int x) {
 super(msg);
 i = x;
 }
 public int val() { return i; }
 private int i;
}

public class ExtraFeatures {
 public static void f() throws MyException2 {
 System.out.println(
 "TFeature. 9BT
fromtic vo"per(msg);

 new public MyExceptr(msg);

}

 public statgc void f() throws MyException2 {

 System.out.println(

 "TFeature. 9BT
fromtgc vo"per(msg);

Chapter 10: Error Handling with Exceptions 541

542 Thinking in Java www.BruceEckel.com

The exception specification
In Java, you’re required to inform the client programmer, who calls your
method, of the exceptions that might be thrown from your method. This is

546 Thinking in Java www.BruceEckel.com

stuffing the current stack information into the old exception object. Here’s
what it looks like:

//: c10:Rethrowing.java
// Demonstrating fillInStackTrace()

public class Rethrowing {

)) e; str00231.88 591.48 0409 12.96 re
f
BT
11.04 0 0 11.04 144 594.4805399m
6 public sssssstrd f(e.ackTrace()))

Chapter 10: Error Handling with Exceptions 547

548 Thinking in Java www.BruceEckel.com

 throw new Throwable();
 } catch(Exception e) {
 System.err.println("Caught in main()");
 }
 }
} ///:~

It’s also possible to rethrow a different exception from the one you caught.
If you do this, you get a similar effect as when you use
fillInStackTrace()—the information about the original site of the
exception is lost, and what you’re left with is the information pertaining to
the new throw:

//: c10:RethrowNew.java
// Rethrow a different object
// from the one that was caught.

Chapter 10: Error Handling with Exceptions 553

554 Thinking in Java www.BruceEckel.com

Chapter 10: Error Handling with Exceptions 559

Chapter 10: Error Handling with Exceptions 563

564 Thinking in Java www.Bkim(a)-0.4(v)8.4(a)10.4630Eck0l0.44(.co)104(m)1(a)-

Chapter 10: Error Handling with Exceptions 567

570 Thinking in Java www.BruceEckel.com

5. Create a class with two methods, f() and g(). In . I n

 573

584 Thinking in Java www.BruceEckel.com

How to use it

Optional initial size of the
buffer.

Chapter 11: The Java I/O System 585

Chapter 11: The Java I/O System 587

InputStream, with
optional buffer size.

Buffered-
InputStream

Use this to prevent a

Chapter 11: The Java I/O System 591

592 Thinking in Java www.BruceEckel.com

Filters:
Java 1.0 class

Corresponding Java 1.1 class

PrintStream PrintWriter

LineNumberInputStream LineNumberReader

StreamTokenizer StreamTokenizer

Chapter 11: The Java I/O System 593

604 Thinking in Java www.BruceEckel.com

606 Thinking in Java www.BruceEckel.com

Compression
The Java I/O library contains classes to support reading and writing

Chapter 11: The Java I/O System 609

Chapter 11: The Java I/O System 613

Chapter 11: The Java I/O System 615

616 Thinking in Java www.BruceEckel.com

 s += d[i].toString();
 s += ")";
 if(next != null)
 s += next.toString();
 return s;
 }
 // Throw exceptions to console:
 public static void main(String[] args)
 throws ClassNotFoundException, IOException {
 Worm w = new Worm(6, 'a');
 System.out.println("w = " + w);
 ObjectOutputStream out =
 new ObjectOutputStream(
 new FileOutputStream("worm.out"));
 out.writeObject("Worm storage");
 out.writeObject(w);
 out.close(); // Also flushes output
 ObjectInputStream in =
 new Objects6f.20t(w);

"worm368 output ObjectOutputStream ou8 ou

"Worm storage");

Chapter 11: The Java I/O System 619

Rather than catching and handling exceptions, this program takes the
quick and dirty approach of passing the exceptions out of main(), so
they’ll be reported on the command line.

622 Thinking in Java www.BruceEckel.com

Chapter 11: The Java I/O System 623

624 Thinking in Java www.BruceEckel.com

Chapter 11: The Java I/O System 627

called writeObject() and readObject() that will automatically be
called when the object is serialized and deserialized, respectively. That is,
if you provide these two methods they will be used instead of the default
serialization.

The methods must have these exact signatures:

private void
 writeObject(ObjectOutputStream stream)
 throws IOException;

private void
 readObject(ObjectInputStream stream)
 throws IOException, ClassNotFoundException

From a design standpoint, things get really weird here. First of all, you
might think that because these methods are not part of a base class or the

628 Thinking in Java www.BruceEckel.com

Chapter 11: The Java I/O System 629

 ByteArrayOutputStream buf =
 new ByteArrayOutputStream();
 ObjectOutputStream o =
 new ObjectOutputStream(buf);
 o.writeObject(sc);
 // Now get it back:
 ObjectInputStream in =
 new ObjectInputStream(
 new ByteArrayInputStream(
 buf.toByteArray()));
 SerialCtl sc2 = (SerialCtl)in.readObject();
 System.out.println("After:\n" + sc2);
 }
} ///:~

630 Thinking in Java www.BruceEckel.com

or the class type, but by actually hunting for the method using reflection.)

Chapter 11: The Java I/O System 631

class House implements Serializable {}

class Animal implements Serializable {
 String name;
 House preferredHouse;
 Animal(String nm, House h) {
 name = nm;
 preferredHouse = h;
 }
 public String toString() {
 return name + "[" + super.toString() +

Chapter 11: The Java I/O System 635

Chapter 11: The Java I/O System 639

Chapter 11: The Java I/O System 641

 }
 } catch(IOException e) {
 System.err.println(
 "st.nextToken() unsuccessful");
 }
 }
 Collection values() {
 return counts.values();
 }
 Set keySet() { return counts.keySet(); }
 Counter getCounter(String s) {
 return (Counter)counts.get(s);
 }
 public static void main(String[] args)
 throws FileNotFoundException {
 WordCount wc =
 new WordCount(args[0]);
 wc.countWords();
 Iterator keys = wc.keySet().iterator();
 while(keys.hasNext()) {
 String key = (String)keys.next();

642 Thinking in Java www.BruceEckel.com

646 Thinking in Java www.BruceEckel.com

650 Thinking in Java www.BruceEckel.com

 while(files.hasNext()) {
 String file = (String)files.next();
 ArrayList ids = identMap.getArrayList(file);
 for(int i = 0; i < ids.size(); i++) {
 String id = (String)ids.get(i);
 if(!classes.contains(id)) {
 // Ignore identifiers of length 3 or
 // longer that are all uppercase
 // (probably static final values):
 if(id.length() >= 3 &&
 id.equals(
 id.toUpperCase()))
 continue;
 // Check to see if first char is upper:
 if(Character.isUpperCase(id.charAt(0))){
 if(reportSet.indexOf(file + id)

654 Thinking in Java www.BruceEckel.com

The discardLine() method is a simple tool that looks for the end of a
line. Note that any time you get a new token, you must check for the end
of the file.

The eatComments() method is called whenever a forward slash is
encountered in the main parsing loop. However, that doesn’t necessarily

Chapter 11: The Java I/O System 657

658 Thinking in Java www.BruceEckel.com

660 Thinking in Java www.BruceEckel.com

662 Thinking in Java www.BruceEckel.com

At compile-time, this is enforced only by your own self-imposed rules, but

664 Thinking in Java www.BruceEckel.com

 }
} ///:~

Each of the classes Candy, Gum, and Cookie have a static clause that is
executed as the class is loaded for the first time. Information will be
printed to tell you when loading occurs for that class. In main(), the

Chapter 12: Run time Type Identification 665

666 Thinking in Java www.BruceEckel.com

Chapter 12: Run time Type Identification 667

668 Thinking in Java www.BruceEckel.com

Chapter 12: Run time Type Identification 669

670 Thinking in Java www.BruceEckel.com

Chapter 12: Run time Type Identification 671

and does not include zero. That’s because zero refers to Pet.class, and
presumably a generic Pet object is not interesting. However, since
Pet.class is part of petTypes the result is that all of the pets get counted.

A dynamic instanceof
The Class

Chapter 12: Run time Type Identification 673

674 Thinking in Java www.BruceEckel.com

x instanceof Base true
x instanceof Derived false
Base.isInstance(x) true
Derived.isInstance(x) false
x.getClass() == Base.class true
x.getClass() == Derived.class false
x.getClass().equals(Base.class)) true
x.getClass().equals(Derived.class)) false
Testing x of type class Derived
x instanceof Base true
x instanceof Derived true
Base.isInstance(x) true
Derived.isInstance(x) true
x.getClass() == Base.class false
x.getClass() == Derived.class true
x.getClass().equals(Base.class)) false
x.getClass().equals(Derived.class)) true

676 Thinking in Java www.BruceEckel.com

 throw e;

552em29(eat)58e s9352(c.1(j
E)(y
124.T)-)8839138e)5 Tw
23 4
029

678 Thinking in Java www.BruceEckel.com

important cases in which this happens. The first is component-based
programming, in which you build projects using Rapid Application
Development (RAD) in an application builder tool. This is a visual

680 Thinking in Java www.BruceEckel.com

682 Thinking in Java www.BruceEckel.com

Chapter 12: Run time Type Identification 685

686 Thinking in Java www.BruceEckel.com

Chapter 12: Run time Type Identification 687

6.

 689

694 Thinking in Java www.BruceEckel.com

Application frameworks
Libraries are often grouped according to their functionality. Some
libraries, for example, are used as is, off the shelf. The standard Java
library String and ArrayList classes are examples of these. Other
libraries are designed specifically as building blocks to create other
classes. A certain category of library is the application framework, whose

Chapter 13: Creating Windows & Applets 697

<PARAM NAME="codebase" VALUE=".">
<PARAM NAME="type" VALUE="application/x-java-
applet;version=1.2.2">
<COMMENT>
 <EMBED type=
 "application/x-java-applet;version=1.2.2"
 width="200" height="200" align="baseline"

698 Thinking in Java www.BruceEckel.com

Chapter 13: Creating Windows & Applets 699

700 Thinking in Java www.BruceEckel.com

Chapter 13: Creating Windows & Applets 701

Chapter 13: Creating Windows & Applets 703

 public void windowClosing(WindowEvent e) {
 System.exit(0);
 }
 });

706 Thinking in Java www.BruceEckel.com

Chapter 13: Creating Windows & Applets 711

Chapter 13: Creating Windows & Applets 713

714 Thinking in Java www.BruceEckel.com

718 Thinking in Java www.BruceEckel.com

720 Thinking in Java www.BruceEckel.com

than “glue” (and the design on which this was based was called “springs
and struts” so the choice of the term is a bit mysterious).

//: c13:Box3.java
// Using Glue.
// <applet code=Box3
// width=450 height=300> </applet>
import javax.swing.*;
import java.awt.*;
import com.bruceeckel.swing.*;

public class Box3 extends JApplet {
 public void init() {
 Box b. Bo.createVertical Bot(*;

Chapter 13: Creating Windows & Applets 723

Event and listener types
All Swing components include

726 Thinking in Java www.BruceEckel.com

Chapter 13: Creating Windows & Applets 727

 Console.run(new ShowAddListeners(), 500,400);
 }
} ///:~

734 Thinking in Java www.BruceEckel.com

Chapter 13: Creating Windows & Applets 735

 // width=350 height=100></aplets>

Chapter 13: Creating Windows & Applets 737

Chapter 13: Creating Windows & Applets 741

import com.bruceeckel.swing.*;

;

public class TextFields extends J Apple {;

 JButton;

 b1 = new JButton("Gle Text"),;

 b2 = new JButton("Sle Text")*; JTextField; t1 = new JTextField(30),; t2 = new JTextField(30),; t3 = new JTextField(30)*; Strtings = new Strtin()*; UpperCaseDocument; ucd = new UpperCaseDocument()*; public void init() {; t1.setDocument(ucd)*; ucd.addDocumentListener(new T1())*; b1.addActionListener(new B1())*;

 b2.addActionListener(new B2())*;

 DocumentListener dl = new T1()*; t1.addActionListener(new T1A())*; Container cp = getContentPane()*; cp.setLayout(new FlowLayout())*; cp.add(b1)*; cp.add(b2)*; cp.add(t1)*;

742 Thinking in Java www.BruceEckel.com

 t3.setText("t1 Action Event " + count++);
 }
 }

750 Thinking in Java www.BruceEckel.com

 public static void main(String[] args) {
 Console.run(new CheckBoxes(), 200, 200);
 }
} ///:~

The trace() method sends the name of the selected JCheckBox and its
current state to the JTextArea using append(), so you’ll see a

Chapter 13: Creating Windows & Applets 757

Chapter 13: Creating Windows & Applets 759

Chapter 13: Creating Windows & Applets 763

Chapter 13: Creating Windows & Applets 765

The checking and unchecking of the menu items is taken care of
automatically. The code handling the JCheckBoxMenuItems shows
two different ways to determine what was checked: string matching
(which, as mentioned above, isn’t a very safe approach although you’ll see

768 Thinking in Java www.BruceEckel.com

770 Thinking in Java www.BruceEckel.com

public class SineWave extends JApplet {
 SineDraw sines = new SineDraw();
 JSlider cycles = new JSlider(1, 30, 5);
 public void init() {
 Container cp = getContentPane();
 cp.add(sines);
 cycles.addChangeListener(new ChangeListener(){
 public void stateChanged(ChangeEvent e) {

Chapter 13: Creating Windows & Applets 773

 Console.run(new Dialogs(), 125, 75);
 }
} ///:~

774 Thinking in Java www.BruceEckel.com

Chapter 13: Creating Windows & Applets 775

 x1 + wide, y1 + high);

Chapter 13: Creating Windows & Applets 777

778 Thinking in Java www.BruceEckel.com

Chapter 13: Creating Windows & Applets 779

782 Thinking in Java www.BruceEckel.com

The following example uses the “default” tree components to display a
tree in an applet. When you press the button, a new subtree is added

Chapter 13: Creating Windows & Applets 783

 JTree tree;
 DefaultTreeModel model;
 public void init() {
 Container cp = getContentPane();
 root = new DefaultMutableTreeNode("root");
 tree = new JTree(root);
 // Add it and make it take care of scrolling:
 cp.add(new JScrollPane(tree),

Chapter 13: Creating Windows & Applets 789

 UIManager.setLookAndFeel(UIManager.
 getCrossPlatformLookAndFeelClassName());
 } catch(Exception e) {
 e.printStackTrace(System.err);
 }
 } else if(args[0].equals("system")) {
 try {
 UIManager.setLookAndFeel(UIManager.
 getSystemLookAndFeelClassName());
 } catch(Exception e) {
 e.printStackTrace(System.err);
 }
 } else if(args[0].equals("motif")) {
 try {
 UIManager.setLookAndFeel("com.sun.java."+
 "swing.plaf.motif.MotifLookAndFeel");
 } catch(Exception e) {
 e.printStackTrace(System.err);
 }
 } else usageError();
 // Note the look & feel must be set before
 // any components are created.
 Console.run(new LookAndFeel(), 300, 200);

790 Thinking in Java www.BruceEckel.com

Chapter 13: Creating Windows & Applets 793

Chapter 13: Creating Windows & Applets 797

The following example shows how easy it is to separate the business logic
from the GUI code:

//: c13:Separation.java

Chapter 13: Creating Windows & Applets 801

component, such as what color it is, what text is on it, what database it’s

804 Thinking in Java www.BruceEckel.com

806 Thinking in Java www.BruceEckel.com

 }
 public void dump(Class bean){
 results.setText("");
 BeanInfo bi = null;
 try {
 bi = Introspector.getBeanInfo(
 bean, java.lang.Object.class);
 } catch(IntrospectionExcep
11.)ry {

Chapter 13: Creating Windows & Applets 807

 Method[] lm =
 events[i].getListenerMethods();
 for(int j = 0; j < lm.length; j++)
 prt("Listener method:\n " +
 lm[j].getName());
 MethodDescriptor[] lmd =
 events[i].getListenerMethodDescriptors();
 for(int j = 0; j < lmd.length; j++)
 prt("Method descriptor:\n " +
 lmd[j].getMethod());
 Method addListener =
 events[i].getAddListenerMethod();
 prt("Add Listener Method:\n " +
 addListener);
 Method removeListener =
 events[i].getRemoveListenerMethod();
 prt("Remove Listener Method:\n " +
 removeListener);
 prt("====================");
 }
 }
 class Dumper implements ActionListener {
 public void actionPerformed(ActionEvent e) {
 String name = query.getText();

); trye) { came 0 cl.PergetNamng nt(); 0 clNotFoundExcep(Act ext e) {)Tj
ET
131.803381.48 0.72 12.96 re
f
BT
11.04 0 0 11.04 1293488.5206 Tm
(results.sy.getTex"Couldn't find
 "ng nt();)Tj
ET
131.290368.4 0.72 13.08 re
f
BT
11.04 0 0 11.04 124 786.4406 Tm
(turn();)Tj
ET
131.277355.44 0.72 12.96 re
f
BT
11.04 0 0 11.04 1267345
f
BT
11.04 0});

 ds D(ct();

 Contaistencpamery.ContnEvPaneext();

);

 p.sy.LayouTexnew4FlowLayouTexd());
 p. exnew4JLabelex"Qualified bean"ng n:"d());

));

Chapter 13: Creating Windows & Applets 0m

810 Thinking in Java www.BruceEckel.com

Chapter 13: Creating Windows & Applets 815

822 Thinking in Java www.BruceEckel.com

826 Thinking in Java www.BruceEckel.com

828 Thinking in Java www.BruceEckel.com

Chapter 14: Multiple Threads 829

important method for Thread is

Chapter 14: Multiple Threads 831

You’ll notice that nowhere in this example is sleep() called, and yet the
output indicates that each thread gets a portion of the CPU’s time in
which to execute. This shows that sleep()

832 Thinking in Java www.BruceEckel.com

 private int count = 0;
 private boolean runFlag = true;
 SeparateSubTask() { start(); }
 void invertFlag() { runFlag = !runFlag; }
 public void run() {
 while (true) {
 try {
 sleep(100);
 } catch(InterruptedException e) {
 System.err.println("Interrupted");
 }
 if(618.48c8intl5E 5tl38 88 550.44 t.setText 13.08ger.toStre
6 r4 0 0++)04 144 540.4805 Tm498 System.err.println("Interrupted");488j
ET
131.88 537.48 0.72 12.96 re485BT
11.04 0 0 11.04 144 527.5206 Tm
(475Tj
ET
131.88 548 0.72 12.96 re472 re
f
BT
11.04 0 0 11.04 144 514.4406 Tm
(6.96 Sl811.9)04 144 540.4805 Tm498 System.err.prin49n("Interrup = 0;)T true;

 } sp722 null3.0re
f
BT
11.04 3558 548 0.72 12.96 re472 re
f
BT
11.04 0 0 11345 if(618.48c8sp72 newT true;

836 Thinking in Java www.BruceEckel.com

Chapter 14: Multiple Threads 837

information. When a Ticker object is created, the constructor adds its
visual components to the content pane of the outer object:

//: c14:Counter4.java
// By keeping your thread as a distinct class,
// you can have as many threads as you want.
// <applet code=Counter4 width=200 height=600>
// <param name=size value="12"></applet>
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import com.bruceeckel.swing.*;

public class Counter4 extends JApplet {
"Sta c"-"3r35ET
131.88 513.48 0.72 12.96 re
f
BT
11.04 042511.04 144 477.4806 Tint <par=8 5tton("Sta c"-"3r22ET
131.88 500.4 0.72 13.08 re
f
BT
11.04 0 76.4.04 144 472 Tc
(024 Tclass CounTeepingends JApplet {)T09ET
131.88 487.44 0.72 12.96 re
f
BT
11.04 039911.04 144 47477.4806 Tm
(pribwt.*utton sta co=Toggle.*utton("Sta c"-"3396ET
131.88 513.48 0.72 12.96 re
f
BT
11.04 038611.04 144 47477.4806 TmTassField awt.*uttoTassField(10*utton("Sta c"-"3383ET
131.88 500.4 0.72 13.08 re
f
BT
11.04 0373.4.04 144 47477.4806 Tint cubliwt.0tton("Sta c"-"3370ET
131.88 487.44 0.72 12.96 re
f
BT
11.04 036011.04 144 47477.4806 TboolearirunFlagt= n)5etton("Sta c"-"3357ET
131.88 513.48 0.72 12.96 re
f
BT
11.04 034711.04 144 47477-0.002024 Tc(-500.4 0.72 13.08 re
f
BT
11.04 0373.4.0.r 13.08 re
f
BT
11.04 0373.4.04 144 47477.4834 Tint cubliwt. b.addActionL clen8 rettonc"-"33Lre
f3ET
131.88 500.4 0.312 12.96 re
f
BT
11.04 036011.04 144 47477.4821 TboolearirunF JPanel p0*uttonPanelre
fT
131.88 500.4 0.182 12.96 re
f
BT
11.04 034711.04 144 47477-0.082024 Tc(-500.0.4.add(t
fT
131.88 500.4 0.05 13.08 re
f
BT
11.04 0373.4.04 144 47477.4295 Tint cubliwt. 4.add(b
fT
131.88 500.4 02922 12.96 re
f
BT
11.04 036011.04 144 47477.4282 TboolearirunF am Callet {):
131.88 500.4 02792 12.96 re
f
BT
11.04 034711.04 144 47477-02692024 Tc(-500.0.getCoxtentPanere
f.add(p
fT

131.88 500.4 0266 13.08 re
f
BT
11.04 0373.4.04 144 47477.4256 Tint cubliwt.}
131.88 500.4 02532 12.96 re
f
BT
11.04 036011.04 144 47477.4243 TboolearirunFnTeepin"-"33L comlements ActionL clen8
BT
11.04 0373.4.2402 12.96 re
f
BT
11.04 034711.04 144 47477-02302024 Tc(-500.0.4 0.72 voidisctionPerformed(ActionE

842 Thinking in Java www.BruceEckel.com

Chapter 14: Multiple Threads 843

// <param name=size value="12">
// <param name=watchers value="15">
// </applet>

844 Thinking in Java www.BruceEckel.com

Chapter 14: Multiple Threads 849

// multiple access to a particular resource.
// <applet code=Sharing2 width=350 height=500>
// <param name=size value="12">
// <param name=watchers value="15">
// </applet>
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import com.bruceeckel.swing.*;

850 Thinking in Java www.BruceEckel.com

854 Thinking in Java www.BruceEckel.com

JavaBeans revisited
Now that you understand synchronization, you can take another look at
JavaBeans. Whenever you create a Bean, you must assume that it will run
in a multithreaded environment. This means that:

1. Whenever possible, all the public methods of a Bean should be
synchronized. Of course, this incurs the synchronized run-
time overhead. If that’s a problem, methods that will not cause
problems in critical sections can be left un-synchronized

Chapter 14: Multiple Threads 857

858 Thinking in Java www.BruceEckel.com

Chapter 14: Multiple Threads 859

just a clue. In this case, for example, a field that

860 Thinking in Java www.BruceEckel.com

Becoming blocked

Chapter 14: Multiple Threads 861

864 Thinking in Java www.BruceEckel.com

866 Thinking in Java www.BruceEckel.com

Wait and notify
In the first two examples, it’s important to understand that both sleep()
and suspend() do not

Chapter 14: Multiple Threads 867

You can call wait() or notify() only for your own lock. Again, you can

868 Thinking in Java www.BruceEckel.com

 i++;
 update();
 try {
 wait();
 } catch(InterruptedException e) {
 System.err.println("Interrupted");
 }
 }
 }
}

class Notifie615.6c8 0 �Dread{

 this.wn2 = wn2

);

 publicNvoid run();{)Tj
ET
131.88 643344 0.72 12.96 re
f
BT
11.04 0 0 11.04 144 543.9806 Tm
- } whil(ru) {
 }try {

InterruptedException e) {

 }tSystem.err.println("Interrupted");

 }tSwn2.ntifiy();)Tj
ET
131.88 63294 0.72 13.08 re
f
BT
11.04 0 0 11.04 144 53194846 Tm
- } } cTj
ET
131.88 531644 0.72 12.96 re
f
BT
11.04 0 0 11.04 144 53069806 Tm
- } cTj
ET
131.88 530348 0.72 12.96 re
f
BT
11.04 0 0 11.04 144 52935206 Tm
()Tj
ET
131.88 52904 0.72 13.08 re
f
BT
11.04 0 0 11.04 144 520.4846 Tm
- } ///:Continued

870 Thinking in Java www.BruceEckel.com

 public Receiver(Container c, Reader in) {
 super(c);
 this.in = in;
 }
 public void run() {
 try {

 Chapter 14: Multiple Threads 871

874 Thinking in Java www.BruceEckel.com

Chapter 14: Multiple Threads 877

The flag suspended inside Suspendable is used to turn suspension on
and off. To suspend, the flag is set to true by calling fauxSuspend()
and this is detected inside run(). The wait(), as described earlier in this
chapter, must be synchronized so that it has the object lock. In

880 Thinking in Java www.BruceEckel.com

Chapter 14: Multiple Threads 881

 }
 }
 }
 class UpMaxL implements ActionListener {
 public void actionPerformed(ActionEvent e) {
 int maxp =

Chapter 14: Multiple Threads 885

move through the entire array calling the f() method for each thread, as

886 Thinking in Java www.BruceEckel.com

Chapter 14: Multiple Threads 889

(2) ThreadGroup[name=system,maxpri=9]
 Thread[main,6,system]

The third exercise creates a new thread group, g1, which automatically

Chapter 14: Multiple Threads 893

 public voic2Q2 -7) {
 while(true) {
 cColor = newColor-7);
 repaint-7);
 try {
 t.sleep(pause);
 } catch(InterruptedException e) {
 System.err.printl -7"Interrupted");
 }
 }
 }
}

public class ColorBoxes extends JApplet {
 private boolean isApplet = true;
 private int gric2= 12;
 private int pause2= 50;
 public voic2init-7) {
 // Get parameters from Web page:
 if (isApplet) {
 String gsize2= getParameter-7"gric");
 if(gsize2!= null)
 gric2= Integer.parseInt-7gsize);
 String pse2= getParameter-7"pause");
 if(pse2!= null)
 pause2= Integer.parseInt-7pse);
 }
 Container cp2= getContentPane-7);
 cp.setLayout-7new GricLayout-7gric, gric));
 for (int i2= 0; i < gric2* gric; i++)
 cp.addtpse2!= null)

Chapter 14: Multiple Threads 895

Chapter 14: Multiple Threads 899

Summary
It is vital to learn when to use multithreading and when to avoid it. The
main reason to use it is to manage a number of tasks whose intermingling
will make more efficient use of the computer (including the ability to
transparently distribute the tasks across multiple CPUs) or be more
convenient for the user. The classic example of resource balancing is using

900 Thinking in Java www.BruceEckel.com

One of the biggest difficulties with threads occurs because more than one

Chapter 14: Multiple Threads 901

902 Thinking in Java www.BruceEckel.com

 903

15: Distributed
Computing

 904 Thinking in Java www.BruceEckel.com

906 Thinking in Java www.BruceEckel.com

Chapter 15: Distributed Computing 909

Chapter 15: Distributed Computing 913

914 Thinking in Java www.BruceEckel.com

The infinite while loop reads lines from the BufferedReader in and
writes information to System.out and to the

920 Thinking in Java www.BruceEckel.com

Notice the simplicity of the MultiJabberServer. As before, a
ServerSocket is created and accept() is called to allow a new
connection. But this time, the return value of accept() (a Socket) is
passed to the constructor for

924 Thinking in Java www.BruceEckel.com

getAppletContext().showDocument(u);

in which

926 Thinking in Java www.BruceEckel.com

Chapter 15: Distributed Computing 929

This database URL is really two jdbc calls in one. The first part
“jdbc:rmi://192.168.170.27:1099/” uses RMI to make the

Chapter 15: Distributed Computing 931

native format and can do whatever you want with it using ordinary Java
code.

932 Thinking in Java www.BruceEckel.com

Step 2: Configure the database
Again, this is specific to 32-bit Windows; you might need to do some
research to figure it out for your own platform.

First, open the control panel. You might find two icons that say “ODBC.”
You must use the one that says “32bit ODBC,” since the other one is for
backward compatibility with 16-bit ODBC software and will produce no
results for JDBC. When you open the “32bit ODBC” icon, you’ll see a
tabbed dialog with a number of tabs, including “User DSN,” “System

Chapter 15: Distributed Computing 933

934 Thinking in Java www.BruceEckel.com

2. Select the “people” table within the database. From within the
table, choose the columns FIRST, LAST, and EMAIL.

3. Under “Filter Data,” choose LAST and select “equals” with an
argument of “Eckel.” Click the “And” radio button.

4.

Chapter 15: Distributed Computing 937

Chapter 15: Distributed Computing 945

 new Integer(2), new Float(0.00),

0.00),

946 Thinking in Java www.BruceEckel.com

948 Thinking in Java www.BruceEckel.com

Servlets

Chapter 15: Distributed Computing 949

950 Thinking in Java www.BruceEckel.com

The GenericServlet class is a shell implementation of this interface and

Chapter 15: Distributed Computing 951

952 Thinking in Java www.BruceEckel.com

There’s one other issue when using HttpServlet. This class provides
doGet() and doPost() methods that differentiate between a CGI “GET”
submission from the client, and a CGI “POST.” GET and POST vary only
in the details of the way that they submit the data, which is something

958 Thinking in Java www.BruceEckel.com

 }
 out.println("<h3> Session Statistics </h3>");

Chapter 15: Di0 7um68[.04 0u68[.2(u68[.59(p)-1.6(t)-4.d68[.59)10.8(Com-7.9(:(a)-6.9u68[.59(p)-1.6ing a)-57281.6963h)-629

966 Thinking in Java www.BruceEckel.com

<H3>Page has been accessed <%= ++hitCount %>
gt

Chapter 15: Distributed Computing 967

968 Thinking in Java www.BruceEckel.com

JSP page attributes and scope
By poking around in the HTML documentation for servlets and JSPs, you
will find features that report information about the servlet or JSP that is
currently running. The following example displays a few of these pieces of
data.

//:! c15:jsp:PageContext.jsp
<%--Viewing the attributes in the pageContext--%>
<%-- Note that you can include any amount of code
inside the scriptlet tags --%>
<%@ page import="java.util.*" %>
<html><body>
Servlet Name: <%= config.getServletName() %>

Servlet container supports servlet version:
<% out.print(application.getMajorVersion() + "."
+ application.getMinorVersion()); %>

<%

Chapter 15: Distributed Computing 973

976 Thinking in Java www.BruceEckel.com

 System.out.println("Ready to do time");

Chapter 15: Distributed Computing 981

984 Thinking in Java www.BruceEckel.com

IDL file is distributed to the client side programmer and becomes the
bridge between languages.

The example below shows the IDL description of our

Chapter 15: Distributed Computing 985

986 Thinking in Java www.BruceEckel.com

 new NameComponent("ExactTime", "");
 NameComponent[] path = { nc };
 ncRef.rebind(path, timeServerObjRef);
 // Wait for client requests:
 java.lang.Object sync =
 new java.lang.Object();
 synchronized(sync){
 sync.wait();
 }
 }
} ///:~

pg

Chapter 15: Distributed Computing 989

Repository. Although the Implementation Repository is part of CORBA,
there is almost no specification, so it differs from vendor to vendor.

As you can see, there is much more to CORBA than what has been covered
here, but you should get the basic idea. If you want more information
about CORBA, the place to start is the OMG Web site, at www.omg.org.
There you’ll find documentation, white papers, proceedings, and
references to other CORBA sources and products.

Java Applets and CORBA
Java applets can act as CORBA clients. This way, an applet can access

Chapter 15: Distributed Computing 991

Reusability: The ideal distributed object can be effortlessly moved onto
another vendors’ application server. It would be nice if you could resell a

992 Thinking in Java www.BruceEckel.com

Chapter 15: Distributed Computing 993

EJB components

Chapter 15: Distributed Computing 995

Remote interface
The Remote interface is a Java Interface that reflects the methods of your
Enterprise Bean that you wish to expose to the outside world. The Remote

996 Thinking in Java www.BruceEckel.com

Chapter 15: Distributed Computing 997

responsible for caching Entity Beans and for maintaining the integrity of
the Entity Beans. The life of an Entity Bean outlives the EJB Container, so
if an EJB Container crashes, the Entity Bean is still expected to be
available when the EJB Container again becomes available.

There are two types of Entity Beans: those with Container Managed
persistence and those with Bean-Managed persistence.

Container Managed Persistence (CMP). A CMP Entity Bean has its
persistence implemented on its behalf by the EJB Container. Through
attributes specified in the deployment descriptor, the EJB Container will
map the Entity Bean’s attributes to some persistent store (usually—but

Chapter 15: Distributed Computing 999

1000 Thinking in Java www.BruceEckel.com

1004 Thinking in Java www.BruceEckel.com

you boot a computer, the first thing it does is look for a disk. If it doesn’t

1006 Thinking in Java www.BruceEckel.com

Chapter 15: Distributed Computing 1007

 1013

Appendix A: Passing & Returning Objects 1021

Appendix A: Passing & Returning Objects 1025

In main()

1026 Thinking in Java www.BruceEckel.com

automatically clone the destination of all the references? The following
example tests this:

//: appendixa:Snake.java
// Tests cloning to see if destination
// of references an-l6ots cled.on

1028 Thinking in Java www.BruceEckel.com

enough knowledge about all of the classes involved in the deep copy to
know that they are performing their own deep copy correctly.

This example shows what you must do to accomplish a deep copy when
dealing with a composed object:

//: appendixa:DeepCopy.java
// Cloning a composed object.

class DepthReading implements Cloneable {
 private double depth;
 public DepthReading(double depth) {
 this.depth = depth;
 }
 public Object clone() {
 Object o = null;
 try {
 o = super.clone();

c l a s s D e p t h R e a d i n g i m p l e m e n t s C l o n e 3 3 3 }

Appendix A: Passing & Returning Objects 1029

}

class OceanReading implements Cloneable {
 private DepthReading depth;

1032 Thinking in Java www.BruceEckel.com

The remainder of the example shows that the cloning did happen by
showing that, once an object is cloned, you can change it and the original
object is left untouched.

Deep copy via serialization
When you consider Java’s object serialization (introduced in Chapter 11),
you might observe that an object that’s serialized and then deserialized is,
in effect, cloned.

So why not use serialization to perform deep copying? Here’s an example

Appendix A: Passing & Returning Objects 1035

1036 Thinking in Java www.BruceEckel.com

language like this, it makes sense that the programmer be able to clone
any object. Thus, clone() was placed in the root class Object, but it was
a public method so you could always clone any object. This seemed to be

Appendix A: Passing & Returning Objects 1037

3. Support cloning conditionally. If your class holds references to
other objects that might or might not be cloneable (a container
class, for example), your clone() can try to clone all of the objects
for which you have refere]TJ
-14.90ch y

1038 Thinking in Java www.BruceEckel.com

Appendix A: Passing & Returning Objects 1039

 }
}

class BackOn extends NoMore {
 private BackOn duplicate(BackOn b) {
 // Somehow make a copy of b
 // and return that copy. This is a dummy
 // copy, just to make the point:
 return new BackOn();

1040 Thinking in Java www.BruceEckel.com

Appendix A: Passing & Returning Objects 1041

TryMore properly calls super.clone(), and this resolves to
NoMore.clone(), which throws an exception and prevents cloning.

But what if the programmer doesn’t follow the “proper” path of calling
super.clone() inside the overridden clone()

1044 Thinking in Java www.BruceEckel.com

Appendix A: Passing & Returning Objects 1045

 }
}

public class CopyConstructor {
 public static void ripen(Tomato t) {
 // Use the "copy constructor":
 t = new Tomato(t);
 System.out.println("In ripen, t is a " +
 t.getClass().getName());
 }
 public static void slice(Fruit f) {

 oid s(fgetN06 Hmmm... will(n rwork?Fruit f) {)Tj
11
131.88 550.44 0.72 12.96 re
f
BT
11.04 0 0 01.04 144 666.5206 Tm
(System.out.prtatic,)5n ripen, t is a " + t.getClass().getName());

 }

 public smai.ouStystg[] argsce(Fruit f) { t = ngetName());)); t07 ngetName());)); t720 getName()); }1.8/:~);

Appendix A: Passing & Returning Objects 1047

Why does it work in C++ and not Java?
The copy constructor is a fundamental part of C++, since it automatically
makes a local copy of an object. Yet the example above proves that it does
not work for Java. Why? In Java everything that we manipulate is a
reference, while in C++ you can have reference-like entities and you can
also pass around the objects directly. That’s what the C++ copy
constructor is for: when you want to take an object and pass it in by value,

1048 Thinking in Java www.BruceEckel.com

Appendix A: Passing & Returning Objects 1051

 }
 public Immutable2 makeImmutable2() {
 return new Immutable2(data);

 public Immutable2 makeImmutable2(592{

1054 Thinking in Java www.BruceEckel.com

and remember to use const everywhere. It can be confusing and easy to
forget.

Overloading ‘+’ and the StringBuffer
Objects of the String class are designed to be immutable, using the
technique shown previously. If you examine the online documentation for
the String

Appendix A: Passing & Returning Objects 1059

1060 Thinking in Java www.BruceEckel.com

Appendix A: Passing & Returning Objects 1061

 1065

1066 Thinking in Java www.BruceEckel.com

Appendix B: The Java Native Interface (JNI) 1069

//# the makefile for this chapter (in the
//# downloadable source code) for an example.
#include <jni.h>
#include <stdio.h>
#include "ShowMessage.h"

extern "C" JNIEXPORT void JNICALL
Java_ShowMessage_ShowMessage(JNIEnv* env,
jobject, jstring jMsg) {
 const char* msg=env->GetStringUTFChars(jMsg,0);
 printf("Thinking in Java, JNI: %s\n", msg);
 env->ReleaseStringUTFChars(jMsg, msg);
} ///:~

Appendix B: The Java Native Interface (JNI) 1071

1072 Thinking in Java www.BruceEckel.com

1074 Thinking in Java www.BruceEckel.com

Appendix B: The Java Native Interface (JNI) 1075

1076 Thinking in Java www.BruceEckel.com

 1077

C: Java
Programming

Appendix C: Java Programming Guidelines 1079

1082 Thinking in Java www.BruceEckel.com

seat, air conditioning, video, etc., and yet you need to create many
of these in a plane. Do you make private members and build a
whole new interface? No—in this case, the components are also
part of the public interface, so you should create public member
objects. Those objects have their own private implementations,

Appendix C: Java Programming Guidelines 1083

state

1084 Thinking in Java www.BruceEckel.com

you. Your mistakes in a class or set of classes won’t destroy the
integrity of the whole system.

35. When you think you’ve got a good analysis, design, or

Appendix D: Resources 1093

1094 Thinking in Java www.BruceEckel.com

boring college text. I was pleasantly surprised—only pockets of the book
contain explanations that seem as if those concepts aren’t clear to the
authors. The bulk of the book is not only clear, but enjoyable. And best of
all, the process makes a lot of practical sense. It’s not Extreme

Appendix D: Resources 1095

1096 Thinking in Java www.BruceEckel.com

introduction to JPython, which allows you to combine Java and Python in

 1099

Index
Please note that some names will be duplicated in
capitalized form. Following Java style, the capitalized
names refer to Java classes, while lowercase names refer

1100

 1101

 1105

FileInputStream · 582
FilenameFilter · 574, 653
FileNotFoundException · 565
FileOutputStream · 583
FileReader · 563, 590

1106

guarded region, in exception handling ·

 1107

setOut(PrintStream) · 604;

1108

defining the class · 88; for an object ·
32; graphical user interface (GUI) · 394,

1110

constructors · 337; distinguishing
overloaded methods · 196; final · 316,
339; final methods · 299; initialization
of method variables · 220; inline
method calls · 299; inner classes in
methods & scopes · 370; lookup tool ·
724; method call binding · 315;
overloading · 194; passing a reference
into a method · 1014; polymorphic
method call · 311; private · 339;
protected methods · 290; recursive ·
459; static · 206; synchronized method
and blocking · 860

 1111

O

1112

persistence · 630; lightweight persistence ·
613

PhantomReference · 495
pipe · 581
piped stream · 869
piped streams · 602
PipedInputStream · 582
PipedOutputStream · 582, 583
PipedReader · 590

 1113

reachable objects and garbage collection ·
495

read() · 581
readChar() · 600
readDouble() · 600
Reader · 581, 589, 590, 869, 913
readExternal() · 620

1114

 1115

1052; indexOf() · 576, 681;
lexicographic vs. alphabetic sorting ·

1116

Tomcat, standard servlet container · 960
tool tips · 740
TooManyListenersException · 796, 814
toString() · 272, 452, 458, 500
training · 93; and mentoring · 95, 96

 1117

 1119

 1121

1124

not allow limitations on duration of an implied warranty, so the above
limitation may not apply to you.

Agreements. Upon such termination, you agree to destroy the CD and all
copies of the CD, whether lawful or not, that are in your possession or under
your control.

2. ADDITIONAL RESTRICTIONS

a. You shall not (and shall not permit other persons or entities to) directly or

 1127

merchantability and fitness for a particular purpose. The entire risk as to the

	Preface
	Preface to the 2nd edition
	Java 2

	The CD ROM

	Introduction
	Prerequisites
	Learning Java
	Goals
	Online documentation
	Chapters
	Exercises
	Multimedia CD ROM
	Source code
	Coding standards

	Java versions
	Seminars and mentoring
	Errors
	Note on the cover design
	Acknowledgements
	Internet contributors

	1: Introduction �to Objects
	The progress of abstraction
	An object has an interface
	The hidden implementation
	Reusing the implementation
	Inheritance:�reusing the interface
	Is-a vs. is-like-a relationships

	Interchangeable objects �with polymorphism
	Abstract base classes and interfaces

	Object landscapes and lifetimes
	Collections and iterators
	The singly rooted hierarchy
	Collection libraries and support for easy collection use
	The housekeeping dilemma: who should clean up?

	Exception handling: dealing with errors
	Multithreading
	Persistence
	Java and the Internet
	What is the Web?
	Client-side programming
	Server-side programming
	A separate arena: applications

	Analysis and design
	Phase 0: Make a plan
	Phase 1: What are we making?
	Phase 2: How will we build it?
	Phase 3: Build the core
	Phase 4: Iterate the use cases
	Phase 5: Evolution
	Plans pay off

	Extreme programming
	Write tests first
	Pair programming

	Why Java succeeds
	Systems are easier �to express and understand
	Maximal leverage with libraries
	Error handling
	Programming in the large

	Strategies for transition
	Guidelines
	Management obstacles

	Java vs. C++?
	Summary

	2: Everything�is an Object
	You manipulate objects �with references
	You must create �all the objects
	Where storage lives
	Special case: primitive types
	Arrays in Java

	You never need to �destroy an object
	Scoping
	Scope of objects

	Creating new �data types: class
	Fields and methods

	Methods, arguments, �and return values
	The argument list

	Building a Java program
	Name visibility
	Using other components
	The static keyword

	Your first Java program
	Compiling and running

	Comments and embedded documentation
	Comment documentation
	Syntax
	Embedded HTML
	@see: referring to other classes
	Class documentation tags
	Variable documentation tags
	Method documentation tags
	Documentation example

	Coding style
	Summary
	Exercises

	3: Controlling Program Flow
	Using Java operators
	Precedence
	Assignment
	Mathematical operators
	Auto increment and decrement
	Relational operators
	Logical operators
	Bitwise operators
	Shift operators
	Ternary if-else operator
	The comma operator
	String operator +
	Common pitfalls when using operators
	Casting operators
	Java has no “sizeof”
	Precedence revisited
	A compendium of operators

	Execution control
	true and false
	if-else
	Iteration
	do-while
	for
	break and continue
	switch

	Summary
	Exercises

	4: Initialization �& Cleanup
	Guaranteed initialization �with the constructor
	Method overloading
	Distinguishing overloaded methods
	Overloading with primitives
	Overloading on return values
	Default constructors
	The this keyword

	Cleanup: finalization and �garbage collection
	What is finalize(€) for?
	You must perform cleanup
	The death condition
	How a garbage collector works

	Member initialization
	Specifying initialization
	Constructor initialization

	Array initialization
	Multidimensional arrays

	Summary
	Exercises

	5: Hiding the Implementation
	package: the library unit
	Creating unique package names
	A custom tool library
	Using imports to change behavior
	Package caveat

	Java access specifiers
	“Friendly”
	public: interface access
	private: you can’t touch that!
	protected: “sort of friendly”

	Interface and implementation
	Class access
	Summary
	Exercises

	6: Reusing Classes
	Composition syntax
	Inheritance syntax
	Initializing the base class

	Combining composition �and inheritance
	Guaranteeing proper cleanup
	Name hiding

	Choosing composition �vs. inheritance
	protected
	Incremental development
	Upcasting
	Why “upcasting”?

	The final keyword
	Final data
	Final methods
	Final classes
	Final caution

	Initialization and �class loading
	Initialization with inheritance

	Summary
	Exercises

	7: Polymorphism
	Upcasting revisited
	Forgetting the object type

	The twist
	Method-call binding
	Producing the right behavior
	Extensibility

	Overriding vs. overloading
	Abstract classes �and methods
	Constructors and polymorphism
	Order of constructor calls
	Inheritance and finalize(€)
	Behavior of polymorphic methods �inside constructors

	Designing with inheritance
	Pure inheritance vs. extension
	Downcasting and run-time �type identification

	Summary
	Exercises

	8: Interfaces & Inner Classes
	Interfaces
	“Multiple inheritance” in Java
	Extending an interface �with inheritance
	Grouping constants
	Initializing fields in interfaces
	Nesting interfaces

	Inner classes
	Inner classes and upcasting
	Inner classes �in methods and scopes
	Anonymous inner classes
	The link to the outer class
	static inner classes
	Referring to the outer class object
	Reaching outward from a multiply-nested class
	Inheriting from inner classes
	Can inner classes be overridden?
	Inner class identifiers
	Why inner classes?
	Inner classes & control frameworks

	Summary
	Exercises

	9: Holding �Your Objects
	Arrays
	Arrays are first-class objects
	Returning an array
	The Arrays class
	Filling an array
	Copying an array
	Comparing arrays
	Array element comparisons
	Sorting an array
	Searching a sorted array
	Array summary

	Introduction to containers
	Printing containers
	Filling containers

	Container disadvantage: �unknown type
	Sometimes it works anyway
	Making a type-conscious ArrayList

	Iterators
	Container taxonomy
	Collection functionality
	List functionality
	Making a stack from a LinkedList
	Making a queue from a LinkedList

	Set functionality
	SortedSet

	Map functionality
	SortedMap
	Hashing and hash codes
	Overriding hashCode(€)

	Holding references
	The WeakHashMap

	Iterators revisited
	Choosing an implementation
	Choosing between Lists
	Choosing between Sets
	Choosing between Maps

	Sorting and searching Lists
	Utilities
	Making a Collection or Map unmodifiable
	Synchronizing a Collection or Map

	Unsupported operations
	Java 1.0/1.1 containers
	Vector & Enumeration
	Hashtable
	Stack
	BitSet

	Summary
	Exercises

	10: Error Handling �with Exceptions
	Basic exceptions
	Exception arguments

	Catching an exception
	The try block
	Exception handlers

	Creating your own exceptions
	The exception specification
	Catching any exception
	Rethrowing an exception

	Standard Java exceptions
	The special case of RuntimeException

	Performing cleanup �with finally
	What’s finally for?
	Pitfall: the lost exception

	Exception restrictions
	Constructors
	Exception matching
	Exception guidelines

	Summary
	Exercises

	11: The Java �I/O System
	The File class
	A directory lister
	Checking for and creating directories

	Input and output
	Types of InputStream
	Types of OutputStream

	Adding attributes �and useful interfaces
	Reading from an InputStream �with FilterInputStream
	Writing to an OutputStream �with FilterOutputStream

	Readers & Writers
	Sources and sinks of data
	Modifying stream behavior
	Unchanged Classes

	Off by itself: �RandomAccessFile
	Typical uses of I/O streams
	Input streams
	Output streams
	A bug?
	Piped streams

	Standard I/O
	Reading from standard input
	Changing System.out to a PrintWriter
	Redirecting standard I/O

	Compression
	Simple compression with GZIP
	Multifile storage with Zip
	Java ARchives (JARs)

	Object serialization
	Finding the class
	Controlling serialization
	Using persistence

	Tokenizing input
	StreamTokenizer
	StringTokenizer
	Checking capitalization style

	Summary
	Exercises

	12: Run-time Type Identification
	The need for RTTI
	The Class object
	Checking before a cast

	RTTI syntax
	Reflection: run-time �class information
	A class method extractor

	Summary
	Exercises

	13: Creating Windows �& Applets
	The basic applet
	Applet restrictions
	Applet advantages
	Application frameworks
	Running applets inside a Web browser
	Using Appletviewer
	Testing applets

	Running applets from the command line
	A display framework
	Using the Windows Explorer

	Making a button
	Capturing an event
	Text areas
	Controlling layout
	BorderLayout
	FlowLayout
	GridLayout
	GridBagLayout
	Absolute positioning
	BoxLayout
	The best approach?

	The Swing event model
	Event and listener types
	Tracking multiple events

	A catalog of Swing components
	Buttons
	Icons
	Tool tips
	Text fields
	Borders
	JScrollPanes
	A mini-editor
	Check boxes
	Radio buttons
	Combo boxes (drop-down lists)
	List boxes
	Tabbed panes
	Message boxes
	Menus
	Pop-up menus
	Drawing
	Dialog Boxes
	File dialogs
	HTML on Swing components
	Sliders and progress bars
	Trees
	Tables
	Selecting Look & Feel
	The clipboard

	Packaging an applet into a JAR file
	Programming techniques
	Binding events dynamically
	Separating business logic �from UI logic
	A canonical form

	Visual programming �and Beans
	What is a Bean?
	Extracting BeanInfo �with the Introspector
	A more sophisticated Bean
	Packaging a Bean
	More complex Bean support
	More to Beans

	Summary
	Exercises

	14: Multiple Threads
	Responsive user interfaces
	Inheriting from Thread
	Threading for a responsive interface
	Combining the thread �with the main class
	Making many threads
	Daemon threads

	Sharing limited resources
	Improperly accessing resources
	How Java shares resources
	JavaBeans revisited

	Blocking
	Becoming blocked
	Deadlock

	Priorities
	Reading and setting priorities
	Thread groups

	Runnable revisited
	Too many threads

	Summary
	Exercises

	15: Distributed Computing
	Network programming
	Identifying a machine
	Sockets
	Serving multiple clients
	Datagrams
	Using URLs from within an applet
	More to networking

	Java Database Connectivity (JDBC)
	Getting the example to work
	A GUI version of the lookup program
	Why the JDBC API �seems so complex
	A more sophisticated example

	Servlets
	The basic servlet
	Servlets and multithreading
	Handling sessions with servlets
	Running the servlet examples

	Java Server Pages
	Implicit objects
	JSP directives
	JSP scripting elements
	Extracting fields and values
	JSP page attributes and scope
	Manipulating sessions in JSP
	Creating and modifying cookies
	JSP summary

	RMI (Remote Method Invocation)
	Remote interfaces
	Implementing the remote interface
	Creating stubs and skeletons
	Using the remote object

	CORBA
	CORBA fundamentals
	An example
	Java Applets and CORBA
	CORBA vs. RMI

	Enterprise JavaBeans
	JavaBeans vs. EJBs
	The EJB specification
	EJB components
	The pieces of an EJB component
	EJB operation
	Types of EJBs
	Developing an EJB
	EJB summary

	Jini: distributed services
	Jini in context
	What is Jini?
	How Jini works
	The discovery process
	The join process
	The lookup process
	Separation of interface and implementation
	Abstracting distributed systems

	Summary
	Exercises

	A: Passing & Returning Objects
	Passing references around
	Aliasing

	Making local copies
	Pass by value
	Cloning objects
	Adding cloneability to a class
	Successful cloning
	The effect of Object.clone(€)
	Cloning a composed object
	A deep copy with ArrayList
	Deep copy via serialization
	Adding cloneability �further down a hierarchy
	Why this strange design?

	Controlling cloneability
	The copy constructor

	Read-only classes
	Creating read-only classes
	The drawback to immutability
	Immutable Strings
	The String and �StringBuffer classes
	Strings are special

	Summary
	Exercises

	B: The Java Native Interface (JNI)
	Calling a native method
	The header file generator: javah
	Name mangling and function signatures
	Implementing your DLL

	Accessing JNI functions: �the JNIEnv argument
	Accessing Java Strings

	Passing and using Java objects
	JNI and Java exceptions
	JNI and threading
	Using a preexisting code base
	Additional information

	C: Java Programming Guidelines
	Design
	Implementation

	D: Resources
	Software
	Books
	Analysis & design
	Python
	My own list of books

	Index

